Graph Theoretical Representation of Atomic Asymmetry and Molecular Chirality of Benzenoids in Two-Dimensional Space
نویسندگان
چکیده
In order to explore atomic asymmetry and molecular chirality in 2D space, benzenoids composed of 3 to 11 hexagons in 2D space were enumerated in our laboratory. These benzenoids are regarded as planar connected polyhexes and have no internal holes; that is, their internal regions are filled with hexagons. The produced dataset was composed of 357,968 benzenoids, including more than 14 million atoms. Rather than simply labeling the huge number of atoms as being either symmetric or asymmetric, this investigation aims at exploring a quantitative graph theoretical descriptor of atomic asymmetry. Based on the particular characteristics in the 2D plane, we suggested the weighted atomic sum as the descriptor of atomic asymmetry. This descriptor is measured by circulating around the molecule going in opposite directions. The investigation demonstrates that the weighted atomic sums are superior to the previously reported quantitative descriptor, atomic sums. The investigation of quantitative descriptors also reveals that the most asymmetric atom is in a structure with a spiral ring with the convex shape going in clockwise direction and concave shape going in anticlockwise direction from the atom. Based on weighted atomic sums, a weighted F index is introduced to quantitatively represent molecular chirality in the plane, rather than merely regarding benzenoids as being either chiral or achiral. By validating with enumerated benzenoids, the results indicate that the weighted F indexes were in accordance with their chiral classification (achiral or chiral) over the whole benzenoids dataset. Furthermore, weighted F indexes were superior to previously available descriptors. Benzenoids possess a variety of shapes and can be extended to practically represent any shape in 2D space-our proposed descriptor has thus the potential to be a general method to represent 2D molecular chirality based on the difference between clockwise and anticlockwise sums around a molecule.
منابع مشابه
dominating subset and representation graph on topological spaces
Let a topological space. An intersection graph on a topological space , which denoted by , is an undirected graph which whose vertices are open subsets of and two vertices are adjacent if the intersection of them are nonempty. In this paper, the relation between topological properties of and graph properties of are investigated. Also some classifications and representations for the graph ...
متن کاملUse of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes
Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...
متن کاملآموزش منیفلد با استفاده از تشکیل گراف منیفلدِ مبتنی بر بازنمایی تنک
In this paper, a sparse representation based manifold learning method is proposed. The construction of the graph manifold in high dimensional space is the most important step of the manifold learning methods that is divided into local and gobal groups. The proposed graph manifold extracts local and global features, simultanstly. After construction the sparse representation based graph manifold,...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملThe Attitude of Variation of Elastic Modules in Single Wall Carbon Nanotubes: Nonlinear Mass-Spring Model
The examination of variation of elastic modules in single wall carbon nanotubes (SWCNTs) is the aim of this paper. Full nonlinear spring-like elements are employed to simulate specific atomic structures in the commercial code ABAQUS. Carbon atoms are attached to each node as a mass point using atomic mass of carbon atoms. The influence of dimensions such as variation of length, diameter, aspect...
متن کامل